
Automatic Di�erentiationof Numerical Integration Algorithms�Peter EberhardInstitute B of MechanicsUniversity of Stuttgart70550 StuttgartGermanype@mechb.uni-stuttgart.de Christian BischofArgonne National LaboratoryMathematics and ComputerScience DivisionArgonne, IL 60439-4844, U.S.A.bischof@mcs.anl.govArgonne Preprint ANL/MCS-P621-1196AbstractAutomatic di�erentiation (AD) is a technique for automatically augment-ing computer programs with statements for the computation of deriva-tives. This article discusses the application of automatic di�erentiationto numerical integration algorithms for ordinary di�erential equations(ODEs), in particular, the rami�cations of the fact that AD is applied notonly to the solution of such an algorithm, but to the solution procedureitself. This subtle issue can lead to surprising results when AD tools areapplied to variable-stepsize, variable-order ODE integrators. The compu-tation of the �nal time step plays a special role in determining the com-puted derivatives. We investigate these issues using various integratorsand suggest constructive approaches for obtaining the desired derivatives.1 IntroductionTypically, the description of technical systems or natural phenomena leadsto complicated mathematical models involving ordinary di�erential equations(ODEs), differential-algebraic equations, or partial di�erential equations.For example, many problems in mechanical, chemical, and electrical engi-neering can be formulated as an initial value problem using ODEs:For given values of system parameters p 2 IRh, �nd the trajectoriesx(t;p);x 2 IRn for t0 � t � t1, where x is the state vector, t�Mathematics Subject Classi�cation: 34A12, 65L05, 65L06, 68N991

the time, t0 the initial time, and t1 the �nal time. The state isdetermined by the solution of the initial value problem_x = f(x;p; t); x(t = t0;p) = x0; (1)where f is the vector of state derivatives and x0 is the initial state.Problem (1) typically is solved by using a numerical integration algorithm, anda large body of literature is devoted to this subject (see, e.g., [6, 13, 14, 15, 19,20, 21]). Also, in many engineering applications, one is interested not only in the�nal state, but also in performance criteria computed from the trajectoriesx. If optimization procedures are applied in order to choose optimal designvariables with respect to certain performance criteria, or if parameter estimationtechniques are used to identify model parameters from measurements (see, e.g.,[2, 8]), then, with the �nal statex1 := x(t1;p); (2)one typically has to compute @x1@pT : (3)While the sensitivities at the �nal time step are of interest, their numerical valuemay depend on the whole time history of the system (e.g., when a performancecriterion is some integral over x from t0 to t1).During the past decade, so-called automatic di�erentiation (AD) tools havebeen developed that make it possible to augment general Fortran or C codeswith statements for the computation of derivatives in an automated fashion. ADrelies on the fact that every computer program employs only simple operationssuch as additions or multiplications or intrinsics such as sin(), whose derivativesare known and then computes derivatives for the whole program by judiciouscomposition of these derivatives using the chain rule of di�erential calculus. Inour experiments, we used the ADIFOR1 tool [3]; the ADIFOR reference, as wellas [1, 10, 17], provides some basics on AD. The impact of the associativity ofthe chain rule on the cost of computing derivatives is discussed in [4, 11], anda collection of currently available AD tools can be found on the World-WideWeb2.While AD has been used successfully in many large-scale applications andinherently computes accurate derivatives, the black-box application of AD canlead to surprising results, because AD will di�erentiate not only the solutioncomputed by a computer program, but also the algorithm by which the solutionis being derived. That is, while AD will compute a derivative, the value of thisderivative may well depend on the algorithm chosen to compute the solution.1See http://www.mcs.anl.gov/adifor and http://www.cs.rice.edu/~adifor.2See http://www.mcs.anl.gov/Projects/autodiff/adtools.2

In this article we investigate the automatic di�erentiation of numerical in-tegration algorithms. In the next section, we consider the automatic di�eren-tiation of a prototypical integration algorithm and illustrate the impact thaterror-adaptive schemes can have on the computed derivatives|that is, di�erentintegrators can lead to very di�erent values for the computed derivatives. Thisrealization also leads us to suggest two approaches to suppress the impact of thesolution algorithm on derivatives, thus resulting in the computation of deriva-tives that are de�ned by the nondiscretized solution x(t;p) and, in general, arethe desired ones.We illustrate these e�ects and our remediation methodology in Section 3 ona relatively simple ODE with known explicit solution, using single-step Runge-Kutta integrators with and without adaptive stepsize control, as well as themultistep Shampine-Gordon algorithm. The computation of the �nal time stephas a fundamental e�ect on the overall derivatives, and this issue is also investi-gated. In Section 4, we then apply our approach to a complicated problem frommultibody dynamics and verify the results using the adjoint variable approach,an approximation-free method to e�ciently compute sensitivities for multibodysystems. Lastly, we summarize our results.2 Automatic Di�erentiation of PrototypicalNumerical Integration AlgorithmsThe numerical integration of ODEs is one of the basic problems in numericalcomputing, and many research groups are working on the development of reli-able and e�cient algorithms. These algorithms can be categorized into severalclasses, including single step algorithms, multistep algorithms, and extrapola-tion algorithms.Special algorithms also exist, for example, for sti� systems, highly or looselycoupled systems, and systems composed of several subsystems with di�erentfrequency ranges or real-time requirements.2.1 Derivatives of TimeTo illustrate the issues relevant to the interplay of AD and integration algo-rithms, we choose some explicit single-step algorithms of Euler and Runge-Kuttatype with and without stepsize control, as well as a sophisticated multistep in-tegration algorithm with adaptive stepsize and interpolation order control. Thefollowing discussion of integration algorithms is intentionally kept simple to em-phasize the salient points. Details on numerical integration algorithms and theirimplementation can be found, for example, in the aforementioned references andin the many codes available from netlib.33See http://netlib.att.com/netlib/master/readme.html.3

With single-step algorithms, the time discretization that typically is appliedto solve (1) leads to a recursive schemexi+1 = xi + hi _�xi; ti+1 = ti + hi; (4)where the subscript i denotes the ith integration step. That is, xi := x(ti),hi is the actual stepsize, and _�xi denotes a slope estimation. The simplest casehi = h = constant and _�xi = _xi yields the explicit Euler scheme; with _�xi = _xi+1,on the other hand, we have the implicit Euler scheme. Usually _�xi is composedfrom di�erent evaluations of the ODE at di�erent times and approximations.The (nonunique) weighting coe�cients of its di�erent components have to satisfya Taylor series approximation with certain order.Most advanced integrators employ adaptive stepsize control that, based onlocal error estimates (e.g., available from a doublestep technique or the simul-taneous evaluation of di�erent-order schemes), dynamically adapts the stepsize.This stepsize control is essential for e�ciency, enabling one to choose the step-size as big as possible, yet at the same time su�ciently small enough to restrictthe integration error. Multistep algorithms additionally use information fromformer steps to predict appropriate stepsizes and slopes. Many sophisticatedmodi�cations, such as the use of variable extrapolation order or projections,may further improve the e�ciency. As a result, all variables in (4) may dependon the system parameters p, that is,xi+1(p) = xi(p) + hi(p) _�xi(p): (5)The procedure de�ned by (5) is the blueprint of a numerical algorithm, whichstarts from the initial values x0 = x0 and the system parameters p and computessome �nal values x1(p) via an often extremely large number of intermediatesteps. Di�erentiating (5) with respect to p, withrx := dxdpT ; (6)we obtain rxi+1 = rxi + hir _�xi +rhi _�xi: (7)Note that depending on how hi is computed, we may obtain very di�erent valuesfor the total derivative rx1. If the initial values x0 are independent from p,then rx0 = 0; otherwise, rx0 has nonzero components.2.2 Computation of the Desired Derivatives for theState VariablesTo obtain the desired derivatives, we can consider two choices, which are illus-trated in Figure 1. 4

x � f(x, p, t)

x(t � t0) � x0

x(t1)

[�x] � [�x] (�x, x, p, t)

�x(t � t0) � �x0

�x(t1)

xi�1 � xi � hi x
.

i

x0 � x0

xj, t j � t1

�xi�1 � ?
�x0 � �x0

�xj, t j � t1

�x(t1) � �xj
�

�����

�����
��������

���������
�����
��������
����� ������
�

����	������
�
����
	�� ���
��
�����

���	����
�
����
	�� ���
��
�����

.. .

Figure 1: Manual transformation versus automatictransformation with AD tools1. Di�erentiate the ODE and integrate:Di�erentiating (1) with respect to p, we obtain with dt=dpT = 0ddpT (_x) = ddpT �dxdt � = @f@xT dxdpT + @f@pT : (8)Exchanging the order of di�erentiation, we thus obtain a new ODE forrx:ddt � dxdpT � = ddt (rx) = _[rx] = @f@xT rx+ @f@pT ; rx(t = t0) = rx0;(9)which we can integrate alongside our original solution. AD techniquescould, for example, be employed to compute @f=@xT and @f=@pT , butwe would not di�erentiate through the integration algorithm for x.Given a suitable integrator, this approach will deliver the desired sensi-tivities rx1 with suitable accuracy, since its behavior is governed jointlyby (1) and (9). Up to the chosen tolerance, the actual time discretizationwill not impact either x1 or rx1.2. Di�erentiate the integrator for the ODE:Viewing the integration procedure for solving (1) as a black box that,given values for p produces values for x1, we can employ an AD tool toaugment both the problem-independent code for the numerical time inte-gration algorithm and the problem-speci�c code for the evaluation of theODE _x = f(x;p; t) with statements for the computation of derivatives.We observe two facts:(a) Since AD tools do not alter the control
ow of the original program,the time discretization chosen is determined solely by the integrationof (1). 5

(b) As observed in (5), the stepsize hi is likely to depend on the pa-rameters p, and an AD tool will associate a gradient rhi with hi.Thus, the update (7), which will be computed by an AD tool, leadsto an inconsistent integrator for rx, as the �nal result depends onthe discretization strategy chosen. Hence, it is also unlikely thatrx1 = rx��ti=t1 equals the desired @x1=@pT .The automatically di�erentiated integration algorithm computes x1(t1(p);p),where the physically implausible dependence of t1 on p results only from theadaptive time discretization. Di�erentiating with respect to p, we obtainrx1 = @x1@t1 rt1 + @x1@pT : (10)The total derivatives rx1 = dx1=dpT and rt1 = dt1=dpT depend on the timediscretization and are computed by the AD-generated code. Thus, to arrive atthe desired solution @x1=@pT , we can pursue one of the following strategies:� Perform an a posteriori error correction:From (10), taking into account (1), we realize that the desired derivatives@x1=@pT , which do not depend on the time discretization chosen, can becomputed as @x1@pT = rx1 � f(x1;p; t1)rt1: (11)� Use an integrator with �xed stepsize:In this case, we have rhi � 0; 8i. Thus rt � 0, and hence rx1 �@x1=@pT in (10). The AD-computed derivative trajectories are the desiredones, and thus, no modi�cation is required for �xed-stepsize integrationalgorithms (see also [18], which explores this issue in more detail in thecontext of a so-called quasi-steady state integrator).� Modify the AD-generated code to enforce rhi = 0; 8i:For the �rst step, the user must guess an initial stepsize h0. Because h0is independent of p, we have rh0 = 0. Assume that the correct step-size is known in advance for each step. Then rhi = 0; 8i (which impliesrti = 0; 8i) and one gets the same correct results as for the �xed step-size algorithms. Thus, by modifying the AD-generated code manually toensure rhi = 0 (12)we can ensure consistency. While this procedure could be done easilywhen the code is developed, and may in fact be desirable because of thepotentially unpredictable nature of rx and rt even when @x=@pT is wellbehaved, it is likely to be a nontrivial task after the fact, since in-depthknowledge of the di�erentiated code may be required in order not to misssubtle dependencies. 6

Perhaps surprising, a commonly used strategy for determining x1 for a predeter-mined t1 results in rt1 = 0 and hence @x1@pT = rx1. If, for a suggested stepsizehi, we have in the last step ti + hi > t1, we are likely to sethi+1 = t1 � ti (implying rhi+1 = �rti); (13)since t1 is a user-selected constant. Thus, the computationti+1 = ti + hi+1 implies rt1 = rti+1 = rti +rhi+1 = 0: (14)Hence, for the last step (and most likely only for the last step), we have rti = 0,and therefore the a posteriori correction is not required for rx1, although it ismost likely required for any other point on the derivative trajectory.However, there is no guarantee that rt1 = 0 if t1 has been preselected. An-other frequently chosen approach to compute x1 is to terminate the integrationat the �rst time point beyond t1 and then interpolate the value of x for t1.In this case, rt1 is unlikely to be zero, and the error correction is required.Thus, for the general user, who most likely is not familiar with the internals ofthe algorithm, we suggest checking whether rtjt=t1 is zero. If it is not, the aposteriori correction (11) should be applied.3 Experimental Results with a One-MassOscillatorThe simplest multibody system is a horizontal one-mass oscillator shown inFigure 2. As shown, for example, in [2], one can derive closed-form solutionsfor both the state and its gradients, and thus the system is well suited as anexample to illustrate the issues outlined in the preceding section.
�ÊÊ ��Figure 2: One-mass oscillator3.1 Mechanical ModelA body with mass m can slide on the horizontal ground. It is coupled to thewall with a linear spring with spring sti�ness c. The position is described by7

y(t). From Newton's equation one can derive the equation of motionm�y + cy = 0 (15)or, with x = [y; _y]T , the corresponding set of �rst-order ODEs_x = � _x1_x2 � = " x2� cmx1 # : (16)With the initial condition x(t = t0) = x0 = [0; v0]T , the solution of the ODE isy(t) = v0rmc sinr cmt: (17)For m = 1 and the system parameters p = [c; v0]T , we �ndy(t) = v0 1pc sinpct; _y(t) = v0 cospct; �y(t) = �v0pc sinpct: (18)Two criteria are now de�ned: The criterion 1 contains the position of the bodyat time t1 = �=2, and for p = [1; 0:5]T we haved 1dp1 = d 1dc = v02c ��2 cos �pc�2�� 1pc sin�pc�2 �� = �0:25;d 1dp2 = d 1dv0 = 1pc sin�pc�2� = 1:0: (19)The criterion 2 integrates the position over the whole interesting simulationtime interval [t0; t1] 2 = Z t1t0 y(t) dt = Z t1=�=2t0=0 v0pc sin (pct) dt = v0pc �1� cospc�2 � : (20)Here, the integral type criterion can still be computed analytically, but for morecomplicated systems it has to be evaluated numerically together with the ODEof the mechanical system, yielding an extended state_x = 24 _x1_x2_x3 35 = 264 x2� cmx1_ 2 375 = 24 x2� cmx1x1 35 : (21)Again we �nd explicit solutions for the gradientsd 2dp1 = d 2dc = v02pc �2 sin �pc�2 �+ v0 cos �pc�2 �c2 � v0c2 ; (22)d 2dp2 = d 2dv0 = 1c � 1c cos �pc�2�; (23)8

and, for the given numerical values, the resultsd 2dp1 = �8 � 12 ; d 2dp2 = 1:0: (24)3.2 Single-Step Integration Algorithms withoutStepsize ControlWe investigate three similar integration schemes: the explicit Euler scheme, theHeun algorithm, and the fourth-order Runge-Kutta algorithm; see [16]. Be-cause the stepsize h does not change during the integration, ADIFOR does notgenerate a gradient rh.Table 1 shows the relative errors for the criteria and the gradients for dif-ferent stepsizes and integration algorithms. Only minor di�erences between thereference gradient and the AD gradients exist. The relative error in the criteriais about the size of the error in the gradients. As expected, automatic di�er-entiation of single-step integration algorithms without stepsize control leads tothe desired result without any need for user modi�cations.The di�erences can be explained by the choice of the stepsize and the al-gorithm; no additional errors are introduced by the automatic di�erentiationprocedure. The higher-order algorithms yield higher accuracies, and the errorsare at least of order O(h) for the Euler integrator, O(h2) for the Heun integratorand O(h4) for the Runge-Kutta integrator. Some components yield even highererror order, for example, for the Runge-Kutta integrator 1 and d 1=dp2 seemsto be of order O(h5).Table 1: Relative errors for di�erent stepsizesStep h Method 1 2 d 1dp1 d 1dp2 d 2dp1 d 2dp20.25 Euler .20e-0 .36e-1 .28e-0 .20e-0 .63e-0 .36e-1Heun .28e-2 .15e-1 .16e-1 .28e-2 .45e-1 .15e-1Ru-Ku .10e-4 .48e-4 .25e-4 .10e-4 .37e-3 .48e-40.025 Euler .20e-1 .33e-3 .21e-1 .20e-1 .72e-1 .33e-3Heun .30e-5 .16e-3 .25e-3 .30e-5 .40e-3 .16e-3Ru-Ku .11e-9 .51e-8 .74e-8 .11e-9 .36e-7 .51e-80.0025 Euler .20e-2 .33e-5 .20e-2 .20e-2 .72e-2 .33e-5Heun .31e-8 .16e-5 .26e-5 .31e-8 .38e-5 .16e-5Ru-Ku .14e-14 .49e-12 .76e-12 .14e-14 .36e-11 .49e-129

3.3 Single-Step Integration Algorithms withAdaptive Stepsize ControlThe next algorithm we investigate is a mixed fourth-/�fth-order Runge-Kuttaalgorithmwith stepsize control; see [7]. To get an estimate for the absolute localerror, a �fth-order Runge-Kutta methodxi+1 = xi + h(: : :) + O(h6) (25)and an embedded fourth-order Runge-Kutta methodx?i+1 = xi + h(: : :) + O(h5) (26)are evaluated. The error is of magnitude O(h5) and follows from the di�erence� = jjxi+1 � x?i+1jj1: (27)Because the error � is of magnitude h5, we can estimate the required stepsize �hfrom the desired error bound ��, the actual stepsize h, and the actual error �:�h5�� � h5� ! �h � h 5r ��� : (28)If �h > h, the actual stepsize was too big, and the step has to be repeated withdecreased stepsize �h until the error estimate is acceptable. Otherwise, the next(increased) stepsize is computed, and the integration proceeds. Because theactual stepsize hi and the actual time ti depend on the state xi and thereforeon the system parameters p, an automatic di�erentiation tool will computegradients rhi = dhi=dpT and rti = dti=dpT , respectively, as suggested in (7).We then employ relation (11) to compute, at every time step, the desired@x=@pT fromrx andrt. Figure 3 shows some of the trajectories from @x=@pT ,rx, and rt, where the error tolerance was chosen to be 10�8. Note that thetrajectories for @x=@pT and the AD-computed rx are very di�erent, but thegradients computed with the correction (11) lead to the correct results. (Thederivatives with respect to p2 and the derivatives related to x2 and x3 show thesame behavior but, for clarity of presentation, are not drawn here.)The error can be controlled by the user-de�ned error bound; see Table 2,where the �nal time is set to t1 = 10. It can be seen that the relative errorsin 1 = x1; 2 = x3 and their derivatives are both within the prescribed errorbound. Of course, the stricter the prescribed error bounds, the higher thenumber of steps required. In Figure 4 the trajectories are shown for two di�erentprescribed errors bounds (10�5 and 10�8). The trajectories for _x and @x=@pTnearly coincide for di�erent error bounds, but because the time discretizationdepends on the prescribed error bound, we get signi�cantly di�erent trajectoriesfor rx and rt. 10

Table 2: Relative errors in the states for di�erent prescribed error bounds�� # Steps 1 2 d 1dp1 d 1dp2 d 2dp1 d 2dp210�5 21 .11e-4 .36e-4 .82e-4 .32e-4 .73e-4 .11e-410�8 72 .89e-7 .36e-7 .11e-6 .54e-7 .35e-7 .22e-710�11 281 .83e-10 .37e-10 .88e-10 .51e-10 .54e-10 .19e-11
0 1 2 3 4 5 6 7 8 9 10

–5

–4

–3

–2

–1

0

1

2

dx1/dp1
dx1/dt

dt/dp1
�x1/�p1(analytical)
�x1/�p1(computed)Figure 3: Trajectories @ 1=@p1 = @x1=@p1, r 1 = rx1, rt1 and _ 1 = _x1Note that in the unmodi�ed AD-created code the stepsize is controlled onlyby the integration of the n ODEs for xi and is not a�ected by the nh ODEs forrxi. Therefore, the prescribed error bound �� is valid only for x.By a manual modi�cation of the generated code, we can also include theextended state rxi in the error estimation. This allows us to guarantee correctresults within the error bounds also for the sensitivities, but of course the inte-gration may require more time steps because of the larger dimension n+ nh ofthe extended ODE.Di�erent methods to compute the criteria and their derivatives at the �naltimestep have been investigated. The simplest approach is to restrict the size ofthe �nal timestep. This can easily be done by checking the new proposed timeti+1 = ti + hi+1 after every step. If ti+1 > t1, we restrict hi+1 to be t1 � ti. Asdescribed in (14), rt1 will be zero and no correction (11) is required to obtainthe correct results.As an alternative, we used interpolation. Here the integration is stopped as11

0 1 2 3 4 5 6 7 8 9 10
-6

-5

-4

-3

-2

-1

0

1

2

dx1=dp1 �� = 10�8dt=dp1 �� = 10�8dx1=dt@x1=@p1 (computed)@x1=@p1 (analytical)dx1=dp1 �� = 10�5dt=dp1 �� = 10�5Figure 4: Trajectories for di�erent time discretizationssoon as ti > t1, and the criteria and derivatives at the �nal time t1 are computedby an interpolation between the last two intgration steps, for example, the linearinterpolation x1 = xi�1 + (xi � xi�1) t1 � ti�1ti � ti�1 : (29)As expected, the results for the criteria are correct, but the results for theirgradients are wrong if the correction (11) is not applied. The use of higher-order interpolation schemes leads to di�erent values for rx1 and rt1, but thevalue for @x1@pT computed from 11 does not change appreciably.If the �nal time is not known explicitly, but is determined implicitly by a�nal conditionH1(t1;x1;p) = 0, a root search has to be performed as describedin [20]. The �nal timestep is not actually performed until the root search de-termined the �nal time with su�cient accuracy. Therefore, not the root searchalgorithm itself but only its result in
uences the �nal state. Because the �naltimestep will be chosen to reach t1, the results for both the criteria and theirgradients need no correction (11). This issue is described in detail in [9].12

3.4 Multistep Integration AlgorithmThe four algorithms described so far are robust, but for production codes,more sophisticated algorithms typically are used. In multibody dynamics theShampine-Gordon algorithm [20] serves as standard solver and has proved itsreliability and e�ciency in many applications. It is a multistep algorithm, inwhich the information already available from previous steps is used to predictfurther steps. Not only is the stepsize adjusted adaptively, but also the order ofextrapolation polynomials is controlled by local error estimates. For trajectoriesthat are not too rough (i.e., nonsti� systems), high polynomial orders and largestepsizes are obtained.The integration algorithm consists of about 900 lines of rather complicatedFortran code. Therefore, a manual modi�cation of the code to ensure rhi = 0is not deemed to be a reliable approach, and the a posteriori error correction(11) is applied to the ADIFOR-generated derivative code. This leads to thecorrect results; see Table 3.The correct �nal time in the investigated version of the Shampine-Gordonalgorithm is computed by using a clever interval bisection routine as describedin [20]. This guarantees that the evaluation of the last accepted step is at the�nal time and rt1 = 0.Table 3: Relative errors in the states for di�erent prescribed error boundsError Bound 1 2 @ 1@p1 @ 1@p2 @ 2@p1 @ 2@p2.1e-2 .11e-2 .66e-2 .12e-1 .11 .11e-1 .18e-1.1e-5 .17e-4 .66e-5 .16e-5 .82e-4 .22e-4 .23e-4.1e-8 .15e-7 .15e-8 .59e-8 .79e-7 .14e-7 .60e-84 Application to a Technical SystemTo allow comparisons with analytical results, we kept the example simple, butit was already possible to show the properties of the di�erentiated integrationalgorithms and various pitfalls that have to be considered. A more complicatedexample from robotics will be presented in the following to show that the pre-sented e�ects also allow a correct handling of interesting real-world problems.The robot in Figure 5 consists of seven bodies, has �ve degrees of freedom,(i.e., it allows �ve independent motions), and is described by ten ODEs. It isdescribed in detail in [2], where the sensitivity of the position of the end e�ectorat the �nal time with respect to disturbances in several system parameters p =13

[F1z; L; tend;m2; I3zz]T is investigated. F1z is a driving force, L a geometricallength, tend the �nal time, m2 a mass, and I3zz a component of the inertiatensor. For optimization purposes, additional criteria such as minimal energyconsumption or minimal process time are interesting, but for clarity here werestrict ourselves to only one criterion. The results are veri�ed by using theadjoint variable method (AVM) and very costly �nite-di�erence approximationswith adaptive order control [2].
Figure 5: RobotThe reference criterion and reference gradient obtained by using the adjointvariable method with integration error tolerances near machine accuracy is forthe component @ =@p1 as follows: = �4:136636; @ @p1 = 0:0186126: (30)Usually it is not required to compute the gradients to such high accuracy. Ifthe relative and absolute error bounds for the Shampine-Gordon integrationalgorithm are chosen as relerr=abserr=10�8 , we get the following errors in thecomponent @ =@p1:AVM: relerr = 8:06 � 10�7; abserr = 1:50 � 10�8;AD+correction: relerr = 2:31 � 10�7; abserr = 4:30 � 10�8:The errors in the other components are similar and omitted here. Bothgradients are su�ciently accurate, and both methods can be used, for example,for the sensitivity analysis of multibody systems. Also, for all other components,correct results are computed with both methods.14

In general, the computation of the adjoint variable gradients is more e�-cient, but they are based on a hand-coded, highly optimized algorithm whoseimplementation took man-years, while the AD-generated code is fairly simpleto create and requires (including the result veri�cation) much less time, at theexpense of a less e�cient execution.We note, however, that, while usually even big codes can be run throughADIFOR within a few days, the time for the veri�cation of the gradients can bemuch higher. Unless both the algorithm and its implementation are well under-stood, one should check the results carefully. This need for veri�cation is notdue to potential weaknesses of AD tools, but due to the fact that AD di�erenti-ates an algorithm without any knowledge of the mathematics that underlied thealgorithm. This is both a strength, as programs of arbitrary size can be handled(ADIFOR has successfully di�erentiated codes of 120,000 lines in length, andproduced the desired results), but also a potential weakness, as the discussionsso far have shown. Thus, AD is no "silver bullet," but we believe that, at leastfrom our experience in multibody optimization, it does substantially ease thee�ort required for derivative computation while delivering acceptable perfor-mance. Finite di�erence approximations are in our experience inacceptable dueto their lack of e�ciency and reliability. The other alternative, the developmentof specialized code for the gradient computation, is costly in terms of humane�ort, but can be justi�ed when maximal e�ciency is a major design goal, forexample, in the development of the adjoint variable method. It is worth em-phasizing though, that the implementation of the adjoint variable method isclosely tied to a particular integration scheme. It is cumbersome to exchangethe integration algorithm, whereas AD techniques allow integration schemes tobe substituted quite easily.5 ConclusionsFrom the described investigations, we can summarize our conclusions in threegroups:� The numerical behavior of the criteria and the gradient computation mustbe studied carefully. It is not obvious, for example, that the stepsize con-trol is determined only by the state variables required for the criteriacomputation and, therefore, the errors introduced in the state variablesfor the gradients may be bigger than the prescribed error bounds for thestate variables for the criteria. Similar issues arise in the context of ap-plying AD to iterative solvers [12]. In our experience, this behavior isacceptable in many practical applications because for optimization pur-poses, for example, it is often su�cient to compute the gradients withlesser accuracy than the criteria.15

� The formulation of the gradient equations for the actual computation per-formed (versus their counterpart in the world of continuous mathemat-ics), such as (7) may be subtle. For example, the formulation of implicit,parameter-dependent �nal conditions instead of a �xed �nal time wouldintroduce new dependencies of the criteria from the intermediate timesteps. Also, time discretization and stepsize control are likely not theonly in
uencing factors from numerics. Features such as variable-orderpolynomial interpolations and projections depend also on the input quan-tities, become assigned gradients from AD tools and therefore in
uencethe �nally computed gradients. Corrections of AD-computed gradientsare required to arrive at the mathematically desired results, and the re-marks given here for the adaptive time discretization thus may need to beextended to handle other auxiliary variables in an algorithm.� Despite the fact that the application of plain AD often yields the rightresults, the inclusion of expert knowledge can highly improve the per-formance and numerical behavior. If, in our example, the di�erentiationof the stepsize control in the AD-generated code is switched o�, we cancompute more e�cient and still correct gradients. However, these modi-�cations require a lot of knowledge about the problem and the gradientcomputation. Thus, even if AD tools provide annotation capabilities thatallow a user to treat certain variables as constant with respect to di�er-entiation, one still needs to be careful not to miss any dependencies.Thus, while the work presented here allowed us to obtain the desired derivativesfrom an algorithm relevant for practical problems such as the Shampine-Gordonalgorithm, we may de�nitely not conclude that the a posteriori correction of(11) is su�cient for all other integration algorithms as well. AD tools suchas ADIFOR or ADIC [5] allow the di�erentiation of arbitrary complex codes,but for each of them, one must decide whether and which modi�cations or aposteriori corrections are required to obtain correct results. General rules arehardly possible, but we expect that the work presented here will cover a fairnumber of cases. Moreover, the work helps to sharpen the users eyes for otherpossible sources of "errors" arising from the discrepancy between the derivativesof the integration algorithm and the derivatives of the solution that is beingapproximated by this algorithm.AcknowledgmentsC. B. was supported by the Mathematical, Information, and ComputationalSciences Division subprogram of the O�ce of Computational and TechnologyResearch, U.S. Department of Energy, under contract W-31-109-Eng-38.This work was partially completed during P. E.'s visit to the Department ofMechanical Engineering at the University of California at Berkeley supported16

by the German Research Council (DFG) under grant EB195/1-1.Lastly, we thank the anonymous referee for pointing out a major oversight inthe initial draft.References[1] M. Berz, C. Bischof, G. Corliss, and A. Griewank (eds.). Computational Di�er-entiation: Techniques, Applications, and Tools. SIAM, Philadelphia, 1996.[2] D. Bestle and P. Eberhard. Analyzing and Optimizing Multibody Systems. Me-chanics of Structures and Machines, 20(1):67{92, 1992.[3] C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Automatic Dif-ferentiation of Fortran77 Programs, IEEE Computational Science & Engineering,3(3):18{32, 1996.[4] C. Bischof and M. Haghighat. On Hierarchial Di�erentiation. In [1], pp. 83{94.[5] C. Bischof, L. Roh, and A. Mauer. ADIC { An Extensible Automatic Di�er-entiation Tool for ANSI-C. Preprint ANL/MCS-P626-1196, Argonne NationalLaboratory, 1996 (to appear in Software Practice and Experience).[6] J. Butcher. The Numerical Analysis of Ordinary Di�erential Equations (Runge-Kutta and General Linear Methods). John Wiley and Sons, New York, 1987.[7] J. Cash and A. Karp. A Variable Order Runge-Kutta Method for Initial ValueProblems with Rapidly Varying Right-Hand Sides. ACM Transactions on Math-ematical Software, 16(3):201{222, 1990.[8] E. Cramer, P. Frank, G. Shubin, J. Dennis, and L. Michael. Problem Formulationsfor Multidisciplinary Optimization. SIAM J. Optimization, 4(4):754{776, 1994.[9] P. Eberhard. Zur Mehrkriterienoptimierung von Mehrk�orpersystemen. VDI-Fort-schritt-Berichte, 11, No. 227. VDI-Verlag, D�usseldorf, 1996.[10] A. Griewank. On Automatic Di�erentiation. In Mathematical Programming: Re-cent Developments and Applications, pp. 83{108. Kluwer Academic Publishers,Amsterdam, 1989.[11] A. Griewank and S. Reese. On the Calculation of Jacobian Matrices by theMarkowitz Rule. In A. Griewank and G. Corliss (eds.), Automatic Di�erentiationof Algorithms: Theory, Implementation, and Application, pp. 126{135. SIAM,Philadelphia, 1991.[12] A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson. DerivativeConvergence of Iterative Equations Solvers. Optimization Methods and Software,2:321{355, 1993.[13] E. Hairer, S. Norsett, and G. Wanner. Solving Ordinary Di�erential Equations I:Nonsti� Problems. Springer, New York, 1987.[14] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� andDi�erential-Algebraic Problems. Springer, New York, 1991.[15] A. Hindmarsh. ODEPACK, a Systematized Collection of ODE Solvers. In R.Stepleman et al. (eds.), Scienti�c Computing, pp. 55{64, IMACS/North-HollandPublishing Company, Amsterdam, 1983.[16] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes inFortran: The Art of Scienti�c Computing. 2nd edition, Cambridge UniversityPress, 1992. 17

[17] L. Rall. Automatic Di�erentiation: Techniques and Applications. Springer,Berlin, 1981.[18] A. Sandu, G. Carmichael, and A. Potra. Sensitivity Analysis for AtmosphericChemistry Models via Automatic Di�erentiation. Atmospheric Environment,31(3):475{489, 1997.[19] G. Sewell. The Numerical Solution of Ordinary and Partial Di�erential Equa-tions. Academic Press, San Diego, 1988.[20] L. Shampine and M. Gordon. Computer Solution of Ordinary Di�erential Equa-tions. Freeman, San Francisco, 1975.[21] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, New York,1980.

18

